An Intelligent Method to Assess Webpage Quality using Extreme Learning Machine
نویسندگان
چکیده
The rapid growth of the Internet as an environment for information exchange and the lack of enforceable standards regarding the information it contains numerous information quality problems. Website quality is dependent on the quality of the software. In the early years, quality of software provided effective support to develop the websites’ performance. However, in the website application of new discipline quality is the major challenging process. There is an increase in the web technology, so there is a need for factors access which is associated with success of website increases as well. Many of the existing website evaluation methods and criteria for evaluating website quality are unable to sufficiently assess the performance and quality of a website, and most of them focus on usability and accessibility. This work proposed an intelligent algorithm based on Extreme Learning Machine (ELM) for evaluating the website quality with respect to the service type which it offers. It is able to evaluate a website which has “best” or “worst” quality by type or by pasting a URL into the text box.
منابع مشابه
A Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection
Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملAn Intelligent Machine Learning-Based Protection of AC Microgrids Using Dynamic Mode Decomposition
An intelligent strategy for the protection of AC microgrids is presented in this paper. This method was halving to an initial signal processing step and a machine learning-based forecasting step. The initial stage investigates currents and voltages with a window-based approach based on the dynamic decomposition method (DDM) and then involves the norms of the signals to the resultant DDM data. T...
متن کاملModeling Discharge Coefficient of Side Weir on Converging Channel Using Extreme Learning Machine
In this study, the discharge coefficient of side weirs located on converging channels was simulated for the first time using a new method of Extreme Learning Machine (ELM). To examine the accuracy of the numerical model, the Monte Carlo simulations were used and the experimental values validation was conducted by the k-fold cross validation method. Then, the input parameters were detected for s...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کامل